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Plan of the talk

1. Motivation: from Finance and Mathematics

2. Preliminaries on Hunt processes

3. Main Theorem: Optimal stopping through Green kernels

4. Application to Lévy processes

5. Closed solution for the distribution of the maximum.

6. A simple example: Complete solution for compound Pois-
son process

7. Some open questions and remarks.

2



1. Financial motivation:

Price a perpetual american call option:

St = S0 exp(Xt) gc(x) = (x−K)+

where

• {Xt} is a stochastic process

• gc(x) is the payoff function

Optimal stopping problem: Find

• the value function V (x)

• the optimal stopping time τ∗

such that

V (x) = sup
τ∈M

Ex
(
e−rτg(Xτ )

)
= Ex

(
e−rτ

∗
g(Xτ∗)

)
.
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Our purpose:

• Consider processes {Xt} as general as possible

• Consider functions g(x) as general as possible

• But: Obtain closed or explicit solutions, or as explicit as
possible.
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1. Mathematical motivation:

If {Xt} is a Lévy process, and

M = sup{Xt : 0 ≤ t ≤ τ (r)}
where τ (r) is an independent exponential time, with param-
eter r ≥ 0, the solution for gc (similar for gp) is2:

τ∗ = inf{t ≥ 0 : Xt ≥ x∗ := K E exp(M)}.

V (x) =
E
(
ex+M −K E(eM )

)+

E(eM )
.

• In words: Find the distribution of M to price the option.

2E.M., Finance and Stochastics (2002)
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Similar results (solution in terms of M):

• For Lévy processes in Bachelier model, i.e.

St = x + Xt

and gp or gc,

• For g(x) = (x+)n and random walks (Novikov and Shiryaev
(2004)),

• For g(x) = (x+)n and Lévy processes (Kyprianou and
Surya (2005)),

• For g(x) = (x+)a (a > 1 real) and Lévy processes
(Novikov and Shiryaev (2006))

• For general g and Regular exponential Lévy processes (Bo-
yarchenko and Levendorskii, 2002)
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Main questions

•Why does M appear in the solution?

• Can you find a probabilistic or analytic explanation?

• A first answer to this question, in a sub-class of Lévy pro-
cess, was found by Boyarchenko and Levendorskii (2002).
They worked analytically, with pseudo-differential opera-
tors.

• In this talk we present a second answer, based on the
general theory of Markov processes, with probabilistic ar-
guments.
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2. Transient Hunt processes:

X = {Xt} is a strong Markov process, quasi left continuous
with paths right continuous with left limits with X0 = x.

The resolvent or Green Kernel is

G(x,A) :=

∫ ∞
0

e−rt Px(Xt ∈ A) dt,

where x ∈ R and A is a Borel subset of R. Assume that
G(x,A) is absolutely continuous w.r.t Lebesgue measure,
and denote G(x, y) the Radon-Nykodim density

A function v : R 7→ [0,+∞] is r-excessive if

Ex e−rτ (v(Xτ )) ≤ v(x) for all stopping times τ
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Examples of Hunt processes in finance:

St = S0 exp(Xt),

where

•Xt = σWt +
(
r − σ2/2)t (Black-Scholes Model)

• {Xt} is a diffusion (Local volatility model)

• {Xt} is a Lévy process

• Local volatility model with jumps:

dXt = a(b−Xt)dt + σ(Xt)dJt

where Jt is a Lévy process (Mean reverting process with
jumps)
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Three key results:

A. The value function V (x) is an excessive function s.t.

g(x) ≤ V (x) ≤ f (x)

for any other f (x) excessive. This is the majorant and
least excessive characterization of the value function by
Dynkin (1963).

B. The function v(x) is excessive ⇔ ∃ a radon measure
σ(dy) s.t.

v(x) =

∫
R
G(x, y)σ(dy) (1)
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C. Theorem: If σ(N) = 0, then v is harmonic for X on the
set N :

For τN = inf{t ≥ 0 : Xt 6∈ N} we have

v(x) = E
(
e−rτN v(XτN )

)
,

Application to optimal stopping:

• If σ(N) = 0 we do not loose value inside N .

• The Null set is the Non-stopping region.

• The complement of N is the Support of σ, also the
Stopping region.
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3. Main Theorem.

• {Xt} is a Hunt process,

• g(x) ≥ 0 is a Borel function, and

• r ≥ 0 is discount factor s.t.

Ex

[
sup
t≥0

e−rtg(Xt)
]
<∞.

Denote

V (x) :=

∫
[x∗,∞)

G(x, y)σ(dy)

with a Radon measure σ(dy) with support on S = [x∗,∞).
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Assume that:

(a) V is continuous,

(b) V (x)→ 0 when x→ −∞.

(c) V (x) = g(x) when x ≥ x∗ (in S: stop),

(d) V (x) ≥ g(x) when x < x∗ (in N : non-stop).

Then the solution to the optimal stopping problem for {Xt}
and g(x) is

τ∗ = inf{t ≥ 0 : Xt ≥ x∗}.
is an optimal stopping time and V (x) is the value function:

V (x) = sup
τ∈M

Ex
(
e−rτg(Xτ )

)
= Ex

(
e−rτ

∗
g(Xτ∗)

)
.
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Some remarks

•More general results can be obtained for more general
Supports (two sided, etc.)

• V is excessive by construction.

•N = (−∞, x∗) is the non-stopping or continuation re-
gion as σ(N) = 0.

• Consequently S = [x∗,∞) is the stopping region.

•Difficult part is (c): find σ(dy) s.t. V (x) = g(x) on S.
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4. Application: Lévy processes and maxima.

A Hunt process with independent and stationary increments
is a Lévy process. If v ∈ R, Lévy-Khinchine formula:

E(eivXt) = etψ(iv)

where, for complex z = iv the characteristic exponent is

ψ(z) = az +
1

2
b2z2 +

∫
R

(
ezx − 1− zh(x)

)
Π(dx).

Here

• the truncation function h(x) = x1{|x|≤1} is fixed,

• a is the drift, σ the variance of the Gaussian part,

•Π is the jump measure
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Wiener - Hopf factorization

Remember that τ (r) an exponential time, with parameter
r, independent of X .

Denote

M = sup
0≤t<τ (r)

Xt and I = inf
0≤t<τ (r)

Xt

called the supremum and the infimum of the process.

Wiener-Hopf-Rogozin factorization states

E(e
ivXτ (r)) =

r

r − ψ(iv)
= E(eivM )E(eivI)

16



Theorem II: Lévy Processes.

Assume Main Theorem hold for X a Lévy process. Then,
there exists a function Q : [x∗,∞)→ R s.t.

V (x) = E (Q(x + M) ; x + M ≥ x∗) , x ≤ x∗.

Example: For the call option

V (x) =
E
(
ex+M −K E(eM )

)+

E(eM )

gives

Q(y) =
ey −K E(eM )

E(eM )
.
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Main idea of the Proof

WH factorization can be written as

Xτ (r) = M + Ĩ

where M and Ĩ are independent

Furthermore

rG(x, dy) = Px(Xτ (r) ∈ dy),

and:

rG(x, y) =


∫ y−x
−∞ fI(t)fM (y − x− t)dt, if y − x < 0,

∫∞
y−x fM (t)fI(y − x− t)dt, if y − x > 0.
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If we plugg in this formula in the Main Theorem

V (x) =

∫ ∞
x∗

G(x, y)σ(dy)

= . . .

= . . .

=

∫ ∞
x∗−x

fM (t)Q(x + t)dt = E (Q(x + M) ; x + M ≥ x∗) ,

where, for z ≥ x∗, we denote

Q(z) = r−1
∫ z

x∗
fI(y − z)σ(dy).

This concludes the proof.
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Closed solutions for P(M ≤ x)

Consider a Lévy process with a and σ arbitrary and jump
measure

Π(dx) =


λp(x)dx if x > 0.

Π−(dx) abitrary, if x < 0,

where

p(x) =

n∑
k=1

mk∑
j=1

ckj
(
αk
)j xj−1

(j − 1)!
e−αkx, x > 0,

is the density of a positive random variable.
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The characteristic exponent is

ψ(z) = λ
[ n∑
k=1

mk∑
j=1

ckj

( αk
αk − z

)j
− 1
]

+ ψ−(z)

Theorem3 For the considered LP we have

E ezMq =

n∏
k=1

(
αk − z
αk

)mk N∏
j=1

(
βj

βj − z

)nj
,

where β1, . . . , βN are the roots of the equation ψ(z) = r
on <(z) > 0.

3A. Lewis, E. M. Wiener-Hopf factorization for Lévy processes with
negative jumps with rational transforms. J. of Appl. Probability,
(2008)
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From this the density of M is

fMq
(x) =

N∑
k=1

nk∑
j=1

dkj
(
βk
)j xj−1

(j − 1)!
e−βkx, x > 0,
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6. A simple example: Compount Poisson process and power reward

Xt = at +

Nt∑
i=1

Yi,

where

• a < 0

• (Nt) is a Poisson process with parameter λ,

• (Yi) are i.i.d. exp(α).

• r = 0 (no discounting)

• g(x) = max(x, 0)γ with γ > 1.

Problem: find V (x), τ∗ s.t.

V (x) = sup
τ∈M

Ex (g(Xτ )) = Ex (g(Xτ∗)) ,
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The Green kernel is

G(x, 0) =

{
A2 eρ x dx, x ≤ 0,

−A1, x > 0,

where

ρ := α +
λ

a
> 0

and

A1 =
α

λ + aα
< 0, A2 =

λ

a(λ + aα)
> 0.

Notice that ρ > 0 means that a.s. limt→∞Xt = −∞.
Aim: find σ(y) and x∗ s.t.

V (x) =

∫
[x∗,+∞)

G(x, y)σ(y)dy

has properties (a), (b), (c) and (d) given in Main Theorem.
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As we want V (x) = xγ for x > x∗:

−σ′(x) + ασ(x) = aγ(γ − 1)xγ−2 − (aα + λ) γxγ−1.

to give

σ(x) = −aγ xγ−1 − λeαx
∫ ∞
x

e−αyγ yγ−1 dy.

Claim: the equation σ(x) = 0 has a unique root, that is

xγ =
λ

(−a)
eαx
∫ ∞
x

e−αz zγ dz,

has a unique positive root, denoted x∗.

The last step consist in the verification that the value func-
tion obtained is continuous and satisfies V (x) > xγ for
x < x∗.
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To conclude, the optimal stopping time τ∗ is given by

τ∗ := inf{t : Xt ≥ x∗},

and the value function is

V (x) =


(x∗)γ exp

(
ρ(x− x∗)

)
for x < x∗,

xγ for x ≥ xγ.

Remark: Since V ′(x∗−) = ρ(x∗)γ and g′(x∗) = γ(x∗)γ−1

there is no smooth fit at x∗.
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Numerical Results.

Main practical problem: find x∗.

• The computations are done with Mathematica-package

• Uses

– a subroutine for incomplete gamma-function

– programs for numerical solutions of equations based
on standard Newton-Raphson’s method and the secant
method.

• A good starting value for Newton-Raphson’s method seems
to be γ/ρ.

• It is interesting to notice from the table that if ρ << α
then x∗ ' γ/ρ.
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α ρ −λ/a γ γ/ρ x∗

10 1 9 20 20 19.8896

10 1 9 5 5 4.8915

10 1 9 1 1 .9

10 9 1 10 1.1111 .7511

10 9 1 2.5 .2789 .0917

1 .5 .5 20 40 38.1592

1 .5 .5 5 10 8.4369
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7. Some open questions and remarks

• Can this Theorem provide closed solutions for new exam-
ples of processes? (simple: work)

•We expect to find a closed formula from g(x) to σ(dy)
for diffusions. (possible)

• Is it possible to extend this representation to finite horizon
optimal stopping problems? (difficult ...)

• In particular: can this representation provide insights in
the “smooth fitting” condition? (would be very nice, but
...)
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